

COMMONWEALTH OF VIRGINIA DEPARTMENT OF MINES, MINERALS, AND ENERGY DIVISION OF MINED LAND RECLAMATION P.O. DRAWER 900; BIG STONE GAP, VA 24219

TELEPHONE: (276)523-8100

APPLICATION – NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT

APPLICANT	Iron Mountain Collieries, LLC.	Application No.	1011197
Facility Name	Iron Mountain #1	County	Wise
Address	4719 Callahan Ave., Norton, VA 24273	Telephone No.	304-840-8464
Existing CSMO Permit No.		Existing NPDES Permit No.	

1. Stan	1. Standard Industrial Classification – SIC Codes				
SIC Code	First	SIC Code	Second		
1 2 2 1	Surface Coal Mining				
SIC Code	Third	SIC Code	Fourth		

2. Company Representative(s) – Provide the names, titles, and telephone numbers of the company officials who have direct responsibility and authority to sign and submit the Discharge Monitoring Reports (DMLR-PT-119) that will be required by the NPDES permit. These officials must have the responsibility and authority to ensure: (a) compliance with the permit's effluent limitations; (b) that discharges are properly sampled and analyzed; and, (c) the monitoring reports (DMLR-PT-119) are properly completed, signed, and timely submitted.

Name of Company Official	Title	Telephone (work)	Telephone (home)
Joseph David Harrison	Owner	(304) 840-8464	Non-responsive based on revised scope.

3. Sample Collection/Analysis – If the company contracts for sampling or testing, provide the following information:

Laboratory Name	Address	Telephone	
EMI	P.O. BOX 1190, Norton, Virginia 24273	(276) 679-6544	
Contact Person	R.J. Porter		

- **4. Outfall Location** On "**Attachment4-A**" (see Page 6), for each outfall and haulroad sump, list the latitude and longitude of its location and the name of the receiving water.
- 5. Flows, Sources of Pollution, and Treatment Technologies
- **A.** Attach a line drawing showing the water flow through the permit. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed description in item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.
- **B.** For each outfall, provide a description of: (1) all operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) the average flow contributed by each operation; (3) the treatment received by the wastewater; and, (4) the outfall(s) to be utilized as representative for effluent characterization and a listing of those outfalls represented. Use additional pages as necessary.

Outfall Number:	003	004
Classification: E = existing and P = proposed. If P, list date discharge expected to begin	P (4/1/23)	P (3/15/23)
Type of Discharge: G = ground water, S = surface runoff, P = process water, and O = other (specify)	S	S
Sources of Discharge: For each outfall di source; therefore, identify all applicable so		
Representative Outfall for effluent characterization	4	4
List of outfall(s) represented or N/A = not applicable	4	N/A
Surface Runoff Sources: Mine Portal Area		
Coal Loading Area		
Coal Stockpile Area		
Refuse Area		
Preparation Plan Area		
Railroad Track Area		
Other (Surface Mine)	X	X
Source(s) other than surface runoff: Mine Dewatering		
Preparation Plant		
Other (specify)		
Discharge Information; Average Flow (gpm)	0-14	0-14
Drainage Area (acres)	7.87	9.33
Disturbed Area (acres)	7.87	9.33
Treatment Facility Identification	Pond 3	Pond 4
Capacity (ac. Ft.)	1.10	1.24

Comments		

DMLR-PT-128 Rev. 09/15

6. Description of Discharge(s) and Treatment Facility(ies)

Type(s) of Treatment Provided: For each of the outfall discharges described above, give an explanation of the type(s) of treatment that will be provided, such as -(1) Sedimentation (solids removal by gravity settling); (2) chemical treatment (i.e., pH neutralization, iron (Fe) removal by oxidation, flocculation, or sedimentation); (3) manganese (Mn) removal by oxidation, flocculation or sedimentation; or (4) other methods (describe).

(1) sedimentation

Chemical Agent(s): If chemical agents (including flocculants, polymers, organic or inorganic compounds) are to be used as part of the treatment process, provide the following information for each chemical agent: (1) trade name of the agent; (2) toxicity of agent; (3) purpose for using the agent and type of treatment for which the chemical agent will be utilized; (4) he specific outfall discharges in which the agent will be used; and, (5) any other pertinent information.

Chemical agents are not proposed to be used.

Leaks or Spills: Provide existing information regarding the history of significant leaks or spills of toxic or hazardous pollutants at the facility in the last three years, including the approximate date and location of the spill or leak, and the type and amount of material released.

This is a new permit.

Biological Toxicity Testing Data: Include, in **Attachment8-A**" (see Page 10), the results of any biological analysis for acute and/or chronic toxicity that have been made on any of your discharges or on a receiving water in relation to your discharge within the past three years.

There are no know biological testing.

7. Pollutant Characteristics: Check YES or NO, as applicable to the permit or proposed permit area.

YES	NO	
	X	A. The area contains a publicly owned treatment works which discharge into the
		water of the United States.
	X	B. The facility treats, stores, or disposes of hazardous wastes.

X	C. Fluids are injected at this facility which are: (1) brought to the surface in
	connection with conventional oil or natural gas production; (2) used for the
	enhanced recovery of oil or natural gas; or (3) for storage of liquid hydrocarbons.
X	D. The area contains a concentrated animal feeding operation or aquatic animal
	production facility that discharges into the waters of the United States.
X	E. This facility will inject industrial effluent below the lower most stratum
	containing, within 1 quarter mile of the well bore, underground sources of
	drinking water.

8. Effluent Characteristics: Provide the following information regarding the quality and quantity of discharges from the permit (or proposed permit) area. (Note: If analytical data is available, provide the results of at least one analysis for every pollutant in the following table. Complete one table for each **representative outfall** (as indicated in part 5(B)). Use additional pages as necessary.

Are all other applicable pollutants listed in EPA form 2C but not listed below believed to

Outfall No.	4	be absent? YES or NO If NO.	, list those additional pollutants in the table below
0 444441 1 (0)	·	and include analytical results and units.	, F
Parai	meter	Analytical Result	Unit
Flow		100	GPM
Temperature		10.5	°C
pН		7.94	STD
TSS		<5	mg/l
Specific Conduc	ctance	530	umhos/cm
TDS		318	mg/l
Sulfates		224.65	mg/l
Bromide		ND	mg/l
Chlorides		5.05	mg/l
Aluminum		0.01	mg/l
Iron		0.04	mg/l
Manganese		0.04	mg/l
Magnesium		26.41	mg/l Caco3
Total Acidity		<5.0	mg/l Caco3
Total Alkalinity		96	mg/l Caco3
Bicarbonate Alk	alinity	96	mg/l Caco3
Carbonate Alkal	linity	<10	mg/l Caco3
Hardness		235.35	mg/l
Total Zinc		<10	ug/l
Total Antimony		<1	ug/l
Total Arsenic		<1	ug/l
Total Beryllium		<1	ug/l
Total Cadmium		< 0.25	ug/l
Total Chromium	1	<1	ug/l
Total Copper		<1	ug/l
Total Lead		<1	ug/l
Total Nickel		<1	ug/l
Total Selenium		1	ug/l
Total Silver		<2	ug/l

DMLR-PT-128 Rev. 09/15

Total Thallium

Total Barium

Total Boron

Total Cobalt

ug/1

ug/l

ug/l

ug/l

< 0.25

24

< 0.03

< 0.18

Application – NPDES Form

Total Cyanide	0.0039	mg/l
Total Phenols	<0.004	mg/l
Nitrate	0.48	mg/l
Nitrite	0.01	mg/l
Dissolved Organic Carbon	0.87	mg/l
Hydrogen Sulfide 1		

^{*}The above numeric results are estimates for 004, they were taken from another outfall of similar effluent. (Pond D – Permit #1101905).

Pond D – Permit #11019					
			n EPA form 2C but not listed below believed to		
Outfall No.		nt? YES or NO If NO , list	t those additional pollutants in the table below		
	and inc	lude analytical results and units.			
Parameter		Analytical Result	Unit		
Flow					
Temperature					
pН					
TSS					
Specific Conductance					
TDS					
Sulfates					
Bromide					
Chlorides					
Aluminum					
Iron					
Manganese					
Magnesium					
Total Acidity					
Total Alkalinity					
Bicarbonate Alkalinity					
Carbonate Alkalinity					
Hardness					
Total Zinc					
Total Antimony					
Total Arsenic					
Total Beryllium					
Total Cadmium					
Total Chromium					
Total Copper					
Total Lead					
Total Nickel					
Total Selenium					
Total Silver					
Total Thallium					
Total Barium					
Total Boron					
Total Cobalt					
Total Cyanide					
Total Phenols					
Nitrate					
Nitrite					

¹ This parameter need only be analyzed for underground mine discharges.

Division of Mined Land Reclamation

Application – NPDES Form

Dissolved Organic Carbon	
Hydrogen Sulfide ²	

Rev. 09/15

 $^{^{\}rm 2}$ This parameter need only be analyzed for underground mine discharges. DMLR-PT-128

		Are all o	ther applicable pollutar	nts listed in	EPA form 2C but not listed below believe	ed to
Outfall No.		be absen	t? YES or NO	If NO , list t	those additional pollutants in the table belo	ow
		and inclu	ide analytical results an	d units.	•	
Parar	neter		Analytical Resu	ılt	Unit	
Flow						
Temperature						
рН						
TSS						
Specific Conductance						
TDS						
Sulfates						
Bromide						
Chlorides						
Aluminum						
Iron						
Manganese						
Magnesium						
Total Acidity						
Total Alkalinity						
Bicarbonate Alk	alinity					
Carbonate Alkal						
Hardness	<u>-</u>					
Total Zinc						
Total Antimony						
Total Arsenic						
Total Beryllium						
Total Cadmium						
Total Chromium	L .					
Total Copper						
Total Lead						
Total Nickel						
Total Selenium						
Total Silver						
Total Thallium						
Total Barium	Total Barium					
Total Boron						
Total Cobalt						
Total Cyanide						
Total Phenols						
Nitrate						
Nitrite						
Dissolved Organ	ic Carbon					
Hydrogen Sulfid	le ³					

Rev. 09/15

 $^{^{\}rm 3}\,$ This parameter need only be analyzed for underground mine discharges. DMLR-PT-128

9. Public Notice:

Attach a copy of your proposed NPDES public notice with the application.

10. Company Certification:

I certify under penalty of law that this document and all attachments thereto were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person(s) who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Company Official's Joseph David Harrison

Owner

Name:

Title:

Signature:

Date:

ATTACHMENT 4-A								
Outfall No.	Latitude	Longitude	Receiving Stream					
003	3524100.19	10220028.29	Un-named Trib. To Looney Creek					
004	3524621.92	10218621.49	Un-named Trib. To Looney Creek					

ATTACHMENT 8-A											
					Acute Toxicity Test			Chronic Toxicity Test			
Outfall	Organism	Start Test Date	End Test Date	NOAEC	LC50	TUa	Pass/Fail	NOEC	IC25	TUc	Pass/Fail